Facilities

Lab Facilities

Masanori Hara Group

The Laboratory for Biomembranes and Drug Delivery Systems

Our goal is to understand the intermolecular and interfacial interactions of materials, and particularly of self-assembling materials, with the biological milieu, and to combine this knowledge with engineering principles to design successful devices to promote human health. Translational research on testing and optimization of these devices as diagnostics and therapeutics for medical applications is of special significance to our work.

Our research is focused on  investigating heterogeneous lipid bilayers with a threefold goal: (I) to contribute to the fundamental understanding of the molecular and supramolecular interactions in heterogeneous lipid membranes, of how these interactions affect collective properties of heterogeneous bilayers, and of how these interactions result in assembling materials with interesting properties, (II) to engineer devices/strategies based on these materials that can be tuned to perform specific tasks, and (III) to translate and optimizethese devices in the form of lipid-based nanoparticles as carriers of diagnostics and therapeutics for medical applications with special focus on cancer.

We have static and dynamic light scattering instruments. Both the size/shape and the motion of particles (for example, polymers and nanoparticles) can be determined with those instruments. 

Celik Catalysis Group

Experimental Resources: The catalysis and reaction engineering laboratories include a gas-phase kinetic reactors for evaluation of solid catalysts at ambient and moderate pressures using gas chromatography (Agilent 7890B GC with FID and TCD detectors) and mass spectrometry (Agilent 5977A GCMS) for steady-state and temporal reaction product analysis and product identification. In situ spectroscopy allows for study of solid samples under reaction conditions and reactant gas flows, including transmission and diffuse-reflectance infrared spectroscopy (Thermo Nicolet iS50 FTIR) and diffuse reflectance UV-visible spectroscopy (Thermo Evolution 300).

Additional resources in related labs include high-pressure liquid chromatography, gas adsorption, scanning and tunneling electron microscopies, energy dispersive x-ray spectroscopy, solid-state magic angle spinning nuclear magnetic resonance spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy.

Computational Resources: We have constructed an 18 node Beowulf-class computing cluster with dual core processors, 4 TB of storage space, and a 1 Gbps network. Additionally, we have access to several computing clusters on campus, including the Rutgers Engineering Computational Cluster (30 dual core nodes), the School of Engineering computing cluster (48 16-core nodes, InfiniBand network), and the CBE computing cluster (8 16-core nodes, InfiniBand network). All clusters are equipped with MPI for parallel computing.

Asefa Group

Asefa laboratory has synthetic equipment to prepare nanomaterials, including vacuum lines, centrifuges, ultrasonicators, rotavaps, and Millipore water purification system, ovens and several eight-step temperature programmable tube furnaces (various models).

The laboratory additionally has a thermogravimetric analyzer (TGA) (Q500, TA Instruments) to study the composition of the materials; gas-chromatograph – mass spectrometer (GC-MS, HP 5972); a gas chromatograph (GC, Agilent) equipped with different types of columns to allow detection of various samples; a potentiostat (PAR 273A, Princeton Applied Research) equipped with a Faraday cage, and all the necessary software to do impedance spectroscopy, cyclic voltammetry, photoelectrochemistry, etc., a UV-Vis-NIR spectrometer (Lambda 950, PerkinElmer) for optical absorption measurements of samples in solution, in solid-state or and in thin film form with wavelength up to the near infrared region (200-3000 nm wavelength); and a gas adsorption instrument (Micromeritics Tristar 3000) for measurement of low relative pressure and high resolution surface area, for determination of pore diameter and pore size distribution of nanoporous materials.

 

Dr Sofou’s lab at Rutgers University

Instrumentation include:
ultra-, superspeed-, low speed-, cryospin-centrifuges, microfuges
N2 freezers, -20 freezers, refrigerators
rotary evaporators (4)
liposome extruders (5)
temperature controlled water bath
temperature controlled dry baths (2)
inverted optical microscope
regular optical microscope
MicroCal Differential Scanning Calorimeter
Olympus 1X70 fluorescence microscope with Olympus BH2RFLT3 high pressure mercury burner and CCD camera
micropipettor
UV-Vis plate reader
Fluorolog 2-2 Horiba Spectrofluorometer with temperature controller
Yobin Yvon-Spex Spectrofluorometer with temperature controller
SLM Aminco Spectrofluorometer with temperature controller
Atomic Absorption Spectrophotometer with graphite furnace (Buck Scientific)
Osmometer
CO2 incubators (2)
One (8ft) chemistry hood
One (5ft) biohazard hood
Autoclave
Column, gel and paper chromatography equipment
One top-loading and one analytical balances
pH meter
Water purification system
Two stations for radionuclide handling
isotope storage area
Automated gamma counter (Cobra)
dose calibrator
G-M counters (3)
 

Chundawat Group

The Glycans, Glycoconjugates, & Glycan Active Enzymes Engineering Laboratory led by Dr. Chundawat at Rutgers is focused on glycans (or carbohydrates), carbohydrate-active enzymes and their application to bioenergy, biomedical, and biomaterials relevant problems. Brief descriptions of the facilities and instrumentation available in the Chundawat research group are listed here. The laboratory space (total area ~1200 square feet) is available in a renovated facility at the school of engineering dedicated for biochemical and biomedical engineering focused research. Some of the general purpose equipment and facilities available include: multiple temperature-controlled incubator shakers for bacterial and yeast cultivation; large ovens (37oC, 100oC); spectrophotometers, tabletop and large volume centrifuges; flask/plate shakers for large-scale bacterial culture preparations; 4oC large deli fridge; -20oC and -80oC large freezers; analytical weighing scales, pH meter, microwave, water baths; UV transilluminators, DNA and protein gel imaging systems, electroporator, Eppendorf thermal cyclers, and DNA/protein gel boxes sufficient for standard molecular cloning and protein expression analysis, sonicator, gel blotter; Thin Layer Chromatography (TLC) chamber and illuminator for glycan characterization; and glassware/reactor equipment for carbohydrate/biomass pretreatment chemistry and chemical synthesis. The lab has access to biosafety hoods, ice machine, dishwasher/dryer, large autoclaves, and water purifier systems that are maintained by the department. Several general-purpose desktop computers are available in the lab and offices for accessing relevant software such as Rosetta/FoldIt (computational protein design software), Pymol (Macromolecule Visualization), Geneious (Bioinformatics), Matlab (Modeling), Aspen Plus (Process Simulations), and Mendeley (Bibliography Management).

 

Details regarding some of the major analytical equipment available in the Chundawat lab are listed below;

* Multi-Mode Microplate Readers: (1) Molecular Devices SpectraMax M5e, (2) Tecan Infinite Pro

* Fast Protein Liquid Chromatography (FPLC) systems with Autosampler/Fraction Collectors: (1) Bio-Rad NGC Quest Plus, (2) GE Healthcare AKTA Prime and Explorer FPLC series

* High Performance Liquid Chromatography (HPLC) Systems: (1) Shimadzu HPLC with auto injector, refractive index and diode array detectors. (2) Agilent 1100 Series HPLC with auto injector, online degasser, quaternary pumps, Diode Array, Fluorescence and ELSD detectors.

* Linear Ion Trap Mass Spectrometer (MS) Detector: Thermo Finnigan LTQ MS/MS with ESI/APCI modes

* Surface Plasmon Resonance (SPR) Biosensor System: Biacore Q SPR

* High performance imaging systems: (1) Olympus inverted microscope for fluorescence/optical microscopy, (2) Lumicks Acoustic Force Spectroscope (AFS) system.